
Specimen Paper 2 SL

Q1 [4 marks]

A cart of mass 3.0 kg moving at 6.0 m s⁻¹ collides with a stationary cart of mass 6.0 kg.

(a) Explain why the total momentum of the two carts before and after the collision is the same.

[2]

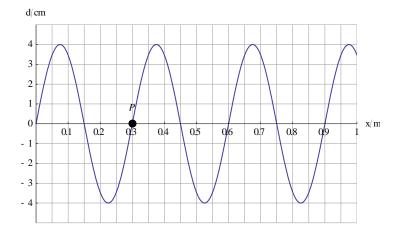
(b) The two carts stick together as a result of the collision. Determine the kinetic energy lost in the collision. [2]

Q2 [6 marks]

- (a) Discuss how the Rutherford-Geiger-Marsden scattering experiment led to the conclusion of the existence of an atomic nucleus. [2]
- (b) A plutonium ($^{239}_{94}$ Pu) nucleus decays by alpha decay into a nucleus of uranium (U).
 - (i) State the reaction equation for this decay. [2]
 - (ii) The following binding energies per nucleon are available:

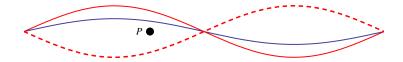
Plutonium 7.5603 MeV Uranium 7.5909 MeV Helium 7.0739 MeV

Estimate the energy released.


[2]

Q3 [8 marks]

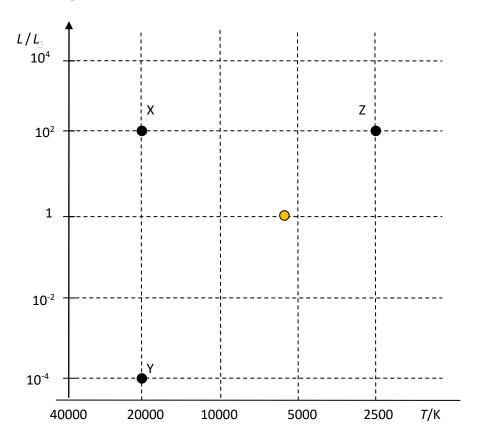
(a) Distinguish between a transverse and a longitudinal wave.


[2]

(b) The graph shows, at t = 0, the variation with distance of the displacement of particles in a medium in which a transverse wave of frequency 250 Hz is travelling to the right.

A particle P in the medium has been marked.

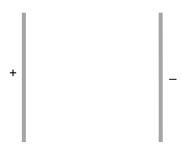
- (i) Calculate the speed of the wave. [2]
- (ii) Draw a graph to show the variation with time *t* of the displacement of P. [2]
- (c) A standing wave is formed on a string with both ends fixed. The solid line represents the wave at t=0 and the dashed line at t=T/2 where T is the period. The blue line represents the wave at $t=\frac{T}{2}$.


The marked point shows the **equilibrium** position of a point P on the string.

At
$$t = \frac{T}{8}$$
 draw

- (i) a point to indicate the position of P. [1]
- (ii) an arrow to indicate the velocity of P. [1]

Q4 [7 marks]


The HR diagram shows the Sun and three other stars X, Y and Z.

- (a) X is much hotter than Z yet X and Z have the same luminosity. Explain this observation. [2]
- (b) Calculate the ratio $\frac{R_Z}{R_Y}$ of the radius of Z to that of Y. [3]
- (c) Gravitational pressure tends to make stars contract. X and Y are both stable stars. State how X and of Y manage to oppose their gravitational pressures.

Q5 [5 marks]

Two parallel plates are oppositely charged. The potential difference between the plates is 240 V and their separation is 2.0 cm.

(a) Draw the electric field lines for this arrangement.

[2]

(b) Calculate the electric field strength between the plates.

[1]

(c) A proton is placed on the positively charged plate and is then released. The experiment is repeated with the proton replaced by an alpha particle.

Calculate the ratio $\frac{v_{\rm p}}{v_{\alpha}}$ of the speed of the proton to that of the alpha particle when the particles

reach the negative plate.

[2]

Q6 [20 marks]

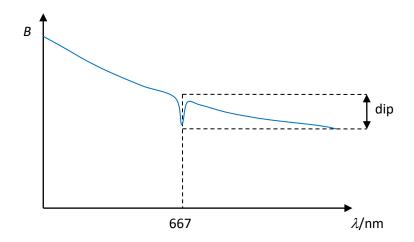
(a) A container of fixed volume holds 7.0 mol of helium (${}_{2}^{4}$ He) at pressure 3.0×10^{5} Pa and temperature 270 K. The volume of a helium atom is about 3×10^{-30} m³.

Calculate

- (i) the total volume of the molecules in the container, [2]
- (ii) the volume of the container, [2]
- (iii) the total mass of the helium gas. [1]
- (b) State and explain, by reference to the kinetic model of gases, why it is reasonable to consider helium in this container to behave as an ideal gas. [2]

(c) The gas in (a) is heated at constant volume from a pressure of 3.0×10^5 Pa and temperature 270 K to a pressure of 5.0×10^5 Pa. Calculate the new temperature of the gas. [2]

(d) Draw a line on the *P-V* diagram to represent the change in (c). [1]



(e)

- (i) Show that the change in the internal energy of helium is about 16 kJ. [1]
- (ii) Estimate the specific heat capacity of helium. [2]

(f) The emission spectrum of helium contains photons of energy 1.86 eV. Show that the wavelength of these photons is 667 nm. [2]

(g) The graph shows the variation of the intensity *B* of the black body radiation emitted by the Sun for wavelengths near 667 nm.

The curve shows a dip at a wavelength of 667 nm.

(i)	Outline what is meant by black body radiation.	[2]
(ii)	Explain why the presence of the dip is evidence that the Sun contains helium.	[3]

Markscheme

1		
а	The total momentum stays the same when no external forces act on the system ✓ The carts exert equal and opposite forces on each other so the net force is zero ✓	[2]
b	6.0×3.0+0=(3.0+6.0)× $v \Rightarrow v = 2.0 \text{ ms}^{-1} \checkmark$ Change in KE: $\frac{1}{2} \times 3.0 \times 6.0^2 - \frac{1}{2} \times 9.0 \times (2.0)^2 = 36 \text{ J} \checkmark$	[2]

2			
а		A very small percentage of the incident alpha particles were	[2]
		scattered at very large scattering angles ✓	
		This required a huge electric force that could only be provided if	
		the positive charge of the atom was concentrated in a very	
		small, massive object√	
b	i	$^{239}_{94}$ Pu $\rightarrow ^{235}_{92}$ U $+ ^{4}_{2}\alpha$	[2]
		Correct numbers for U√	
b	ii	235×7.5909+4×7.0739−239×7.5603 ✓	[2]
		5.25 MeV √	

3			
а		In a transverse wave the displacement is at right angles to the	[2]
		direction of energy transfer√	
		In a longitudinal wave the displacement is parallel to the	
		direction of energy transfer ✓	
b	i	$\lambda = 0.30 \mathrm{m}\checkmark$	[2]
		$v = f\lambda = 250 \times 0.30 = 75 \text{ms}^{-1} \checkmark$	

b	ii	d/cm	[2]
, o	"	4 2 0 1 2 3 4 5 t/ms Correct shape Correct period ✓	
С	i	P	[1]
С	ii		[1]

4			
а		Luminosity also depends on area ✓	[2]
		Star Z has a much larger area than X√	
b	i	$ \frac{L_z}{L_Y} = \frac{4\pi\sigma R_z^2 T_z^4}{4\pi\sigma R_Y^2 T_Y^4} = 10^6 \checkmark $ $ \frac{R_z}{R_Y} = \sqrt{10^6 \times \frac{20000^4}{2500^4}} \checkmark $ $ \frac{R_z}{R_Y} = 6.4 \times 10^3 \checkmark $	[3]
С	i	X: by radiation pressure caused by fusion reactions ✓	[1]
С	ii	Y: by electron degeneracy pressure ✓	[1]

5		
а	Uniform lines from left to right in the interior√	[2]
	Edge effects√	

b	$E = \frac{V}{d} = \frac{240}{2.0 \times 10^{-2}} = 2.2 \times 10^4 \text{ NC}^{-1} \checkmark$	[1]
С	$qV = \frac{1}{2}mv^{2} \Rightarrow v = \sqrt{\frac{2qV}{m}} \checkmark$ $\frac{v_{p}}{v_{\alpha}} = \sqrt{\frac{q_{p}m_{\alpha}}{q_{\alpha}m_{p}}} = \sqrt{\frac{1}{2} \times 4} = \sqrt{2} \checkmark$	[2]

6			
а	i	$N = 7.0 \times 6.02 \times 10^{23} = 4.2 \times 10^{24} \checkmark$	[2]
		$4.2 \times 10^{24} \times 3.0 \times 10^{-30} = 1.3 \times 10^{-5} \text{ m}^3 \checkmark$	
а	ii	$V = \frac{RnT}{P} \checkmark$	[2]
		$V = \frac{8.31 \times 7.0 \times 270}{3.0 \times 10^5} = 5.2 \times 10^{-2} \text{ m}^3 \checkmark$	
а	iii	7×4=28 g ✓	[1]
b		One of the assumptions of the kinetic theory of gases states that the volume of the molecules is negligible compared to the volume of the gas ✓	[2]
		Here $\frac{V_{\text{molecules}}}{V_{\text{gas}}} = \frac{1.3 \times 10^{-5}}{5.2 \times 10^{-2}} = 2.5 \times 10^{-4} \text{ which is very small } \checkmark$	
С		$\frac{P_1}{T_1} = \frac{P_2}{T_2} \Longrightarrow T_2 = T_1 \times \frac{P_2}{P_1} \checkmark$	[2]
		$T_2 = 270 \times \frac{5.0}{3.0} = 450 \text{ K} \checkmark$	
d		P	[1]
		0	
		0	
		Vertical straight line ✓	

е	i	$\Delta U = \frac{3}{2} Rn\Delta T = \frac{3}{2} \times 8.31 \times 7.0 \times (450 - 270) = 15706 \text{ J} \checkmark$	[1]
е	ii	Realization that $Q = \Delta U \checkmark$	[2]
		$c = \frac{Q}{m\Delta T} = \frac{15705}{0.028 \times (450 - 270)} = 3.1 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1} \checkmark$	
f		$E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E} \checkmark$	[2]
		$\lambda = \frac{1.24 \times 10^{-6}}{1.86} = 666.6 \approx 667 \text{ nm} \checkmark$	
g	i	[2] max from	[2]
		Electromagnetic radiation with an infinite rage of wavelengths ✓	max
		With a peak determined by temperature ✓	
		Radiation emitted by a body at some finite kelvin temperature Rediation with an integral to the 4th account of the last in	
		Radiation with an intensity proportional to the 4 th power of the kelvin temperature√	
g	ii	Helium has energy levels separated by 1.86 eV✓	[3]
ь	"	This energy difference is unique to helium√	[5]
		The dip implies that photons of this energy are absorbed ✓	
		By helium	